

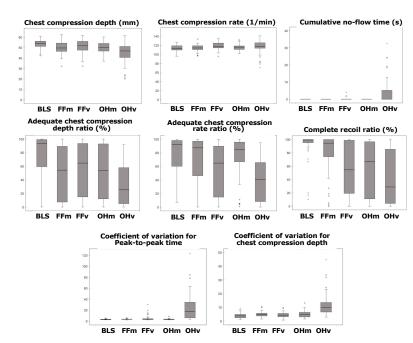
Impact of Provider/Patient Positions on CPR Quality During Rescue Sledge Resuscitation on Inclined Terrain: A Controlled Manikin Study

Korbinian Granel^{1*}, Andreas Rößle^{1*}, Valentin Wagenbichler¹, Lorenz Kronast¹, Marc Lazarovici¹, Andreas Bayer¹, Aaron Benkert¹, Max Gottstein¹, Frieder Pankratz¹, Stephan Prueckner¹, Roman Schniepp¹
¹Institut für Notfallmedizin und Medizinmanagement, University Hospital, Ludwig-Maximillian University Munich, Bavaria, Germany

INTRODUCTION


Providing high-quality cardiopulmonary resuscitation (CPR) during alpine rescue on inclined terrain is challenging. This study evaluated the effect of rescuer position on CPR quality during simulated sledge transport.

METHODS


In a controlled manikin study, 43 trained mountain rescuers performed two-minute compression-only CPR in four positions on a 20° inclined rescue sledge: face-to-face mountain (FFm), face-to-face valley (FFv), overhead mountain (OHm), and overhead valley (OHv). Standard basic life support (BLS) on flat ground served as reference. Compression depth (CCD), rate (CCR), recoil, no-flow time (NFT), and variability were recorded. Participants also rated exertion, quality, and stability.

CCD (mm) 53.28 ± 4.28 49.91 ± 5.67* 50.91 ± 6.72* 49.98 ± 6.01* 44.64 ± 10.12* 13.86 < 0.001 4,168 119.36 ± 8.33* 115.23 ± 7.02* 115.91 ±14.99 6.34 1.75, <0.001 .13 (1/min) 73.56 CCRr 0.79 ± 0.25 0.71 ± 0.31 0.52 ± 0.38* 0.73 ± 0.30 0.39 ± 0.32* 22.56 4, 168 <0.001 .35 NFT (s) 4.31 ± 7.81 0.00 ± 0.00 0.00 ± 0.00 CREr 0.91 ± 0.22 0.78 ± 0.34 $0.58 \pm 0.40^{*}$ $0.56 \pm 0.40^{*}$ $0.40 \pm 0.39^*$ 15.83 4, 168 < 0.001 .27 CV CCD 4.90 ± 1.82 4.51 ± 1.97 4.96 ± 2.53 12.28 ± 8.83* 26.87 1.32, <0.001 .91 1.08, <0.001 .41 45.34

RESULTS

Position had a significant effect on compression depth (F = 13.86, p < 0.001). CCD was highest in BLS (53.3 \pm 4.3 mm) and comparable in FFv (50.9 \pm 6.7 mm, p = 0.36), but lower in FFm (49.9 \pm 5.7 mm, p < 0.05), OHm (50.0 \pm 6.0 mm, p < 0.05), and OHv (44.6 \pm 10.1 mm, p < 0.001). Adequate depth ratio (CCDr) was higher in BLS (0.76 \pm 0.33) than FFm (0.49 \pm 0.40, p < 0.05) and OHv (0.33 \pm 0.30, p < 0.01). Mean CCR remained within 100–120/min across all conditions, but the correct rate ratio (CCRr) declined in valley-facing positions (BLS 0.79 \pm 0.25 vs. OHv 0.39 \pm 0.32, p < 0.001). Complete recoil (CREr) was more frequent in BLS (0.91 \pm 0.22) and FFm (0.78 \pm 0.34) compared to other positions (p < 0.05). NFT occurred only in valley-facing conditions (FFv 0.18 \pm 0.72 s; OHv 4.3 \pm 7.8 s). Subjectively, FFm was rated highest for quality (7.3 \pm 1.3) and stability (7.3 \pm 1.6), while OHv was most exhausting (8.5 \pm 1.4) and lowest in perceived quality (2.6 \pm 1.8; p < 0.001).

CONCLUSION

CPR quality is reduced on an inclined rescue sledge compared with flat-ground BLS. Mountainfacing positions, particularly FFm, maintain compression performance more effectively than valley-facing orientations. These findings support position-specific recommendations for alpine resuscitation training and practice.

